Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
J Am Chem Soc ; 146(19): 13133-13141, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38695282

ABSTRACT

Triphenylmethyl (trityl) radicals have shown potential for use in organic optoelectronic applications, but the design of practical trityl structures has been limited to donor/radical charge-transfer systems due to the poor luminescence of alternant symmetry hydrocarbons. Here, we circumvent the symmetry-forbidden transition of alternant hydrocarbons via excited-state symmetry breaking in a series of phenyl-substituted tris(2,4,6-trichlorophenyl)methyl (TTM) radicals. We show that 3-fold phenyl substitution enhances the emission of the TTM radical and that steric control modulates the optical properties in these systems. Simple ortho-methylphenyl substitution boosts the photoluminescence quantum efficiency from 1% (for TTM) to 65% at a peak wavelength of 612 nm (for 2-T3TTM) in solution. In the crystalline solid state, the neat 2-T3TTM radical shows a remarkably high photoluminescence quantum efficiency of 25% for emission peaking at 706 nm. This has implications in the design of aryl-substituted radical structures where the electronic coupling of the substituents influences variables such as emission, charge transfer, and spin interaction.

2.
Nat Mater ; 23(4): 519-526, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38480865

ABSTRACT

Hyperfluorescence shows great promise for the next generation of commercially feasible blue organic light-emitting diodes, for which eliminating the Dexter transfer to terminal emitter triplet states is key to efficiency and stability. Current devices rely on high-gap matrices to prevent Dexter transfer, which unfortunately leads to overly complex devices from a fabrication standpoint. Here we introduce a molecular design where ultranarrowband blue emitters are covalently encapsulated by insulating alkylene straps. Organic light-emitting diodes with simple emissive layers consisting of pristine thermally activated delayed fluorescence hosts doped with encapsulated terminal emitters exhibit negligible external quantum efficiency drops compared with non-doped devices, enabling a maximum external quantum efficiency of 21.5%. To explain the high efficiency in the absence of high-gap matrices, we turn to transient absorption spectroscopy. It is directly observed that Dexter transfer from a pristine thermally activated delayed fluorescence sensitizer host can be substantially reduced by an encapsulated terminal emitter, opening the door to highly efficient 'matrix-free' blue hyperfluorescence.

3.
Chemistry ; : e202303872, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38477400

ABSTRACT

Owing to its high natural abundance compared to the commonly used transition (precious) metals, as well as its high Lewis acidity and ability to change oxidation state, aluminium has recently been explored as the basis for a range of single-site catalysts. This paper aims to establish the ground rules for the development of a new type of cationic alkene oligomerisation catalyst containing two Al(III) ions, with the potential to act co-operatively in stereoselective assembly. Five new dimers of the type [R2Al(2-py')]2 (R=Me, iBu; py'=substituted pyridyl group) with different substituents on the Al atoms and pyridyl rings have been synthesised. The formation of the undesired cis isomers can be suppressed by the presence of substituents on the 6-position of the pyridyl ring due to steric congestion, with DFT calculations showing that the selection of the trans isomer is thermodynamically controlled. Calculations show that demethylation of the dimers [Me2Al(2-py')]2 with Ph3C+ to the cations [{MeAl(2-py')}2(µ-Me)]+ is highly favourable and that the desired trans disposition of the 2-pyridyl ring units is influenced by steric effects. Preliminary experimental studies confirm that demethylation of [Me2Al(6-MeO-2-py)]2 can be achieved using [Ph3C][B(C6F5)4].

4.
ACS Appl Energy Mater ; 7(2): 414-426, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38273966

ABSTRACT

Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d']bis([1,2,3]triazole)-1,5-diide (-0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV-Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy.

5.
Dalton Trans ; 52(39): 14017-14026, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37740353

ABSTRACT

Heterometal-containing polyoxotitanates (POTs) are much-studied single-source precursors (SSPs) for doped TiO2. In this work the properties of a wide range of lanthanide-containing POTs are studied to assess their potential use as SSPs for Ln-Ti hybrid oxides. The novel cage compounds [{Ti2O(OEt)8}(EtOH·LnCl)]2 (Ln = Sm, Gd, Tb, Dy, Ho, Tm and Yb) are structurally characterised. The magnetic properties of the Ln = Dy and Ho compounds were characterised using SQUID magnetometry-in both cases, there is evidence of significant uniaxial magnetic anisotropy, but magnetic relaxation is fast and therefore no single-molecule magnetic properties are observed. Upon decomposition lanthanide-doped anatase (Ln = La) or titania/LnTi-oxide mixtures are obtained, which show efficient stabilisation of the catalytically active anatase phase up to high temperatures, making the materials of potential interest for applications in photocatalysis.

6.
Healthc Manage Forum ; 36(6): 393-398, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37439203

ABSTRACT

The COVID-19 pandemic has been characterized as a "big-event disruption" that fundamentally challenged the sustainability of existing healthcare business and service models and demanded innovation through "dual transformation" simultaneously to both core operations and the evolution of new strategic directions. The concept of disruptive innovation as applied to healthcare is reviewed and the strategies of distributed healthcare organizations supporting the most medically and socially complex communities during the COVID-19 pandemic are described as demonstrative of the promise of disruptive innovation in healthcare to bring about the necessary shift away from acute and facility-based care to integrated health and social care in the community. The place of new digital health technologies including "big data" analytics, digital platforms, and artificial intelligence/machine learning are identified as being integral to optimizing the scale and scope of impact of distributed community health and social care.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Artificial Intelligence , Pandemics , Delivery of Health Care , Machine Learning
7.
Front Cardiovasc Med ; 10: 1194645, 2023.
Article in English | MEDLINE | ID: mdl-37351284

ABSTRACT

Cardioplegic cardioprotection strategies used during paediatric open-heart surgery remain suboptimal. Sildenafil, a phosphodiesterase 5 (PDE-5) inhibitor, has been shown to be cardioprotective against ischemia/reperfusion injury in a variety of experimental models and this study therefore tested the efficacy of supplementation of cardioplegia with sildenafil in a piglet model of cardiopulmonary bypass and arrest, using both cold and warm cardioplegia protocols. Piglets were anaesthetized and placed on coronary pulmonary bypass (CPB), the aorta cross-clamped and the hearts arrested for 60 min with cardioplegia with or without sildenafil (10 nM). Twenty minutes after removal of cross clamp (reperfusion), attempts were made to wean the pigs from CPB. Termination was carried out after 60 min reperfusion. Throughout the protocol blood and left ventricular tissue samples were taken for analysis of selected metabolites (using HPLC) and troponin I. In both the cold and warm cardioplegia protocols there was evidence that sildenafil supplementation resulted in faster recovery of ATP levels, improved energy charge (a measure of metabolic flux) and altered release of hypoxanthine and inosine, two purine catabolites. There was no effect on troponin release within the studied short timeframe. In conclusion, sildenafil supplementation of cardioplegia resulted in improved cardiac energetics in a translational animal model of paediatric CPB surgery.

8.
Healthc Q ; 26(1): 24-30, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37144698

ABSTRACT

The Palliative Education and Care for the Homeless (PEACH) program comprises a community palliative care team serving some of the most complex clients in the healthcare system. Formal partnerships bring together physician, nursing, psychosocial and homecare, health and housing navigation supports. PEACH has served over 1,000 clients, leading field-defining research, medical education and public advocacy. The PEACH program demonstrates that innovation through deep interorganizational and intersectoral integration can drive value-based impact for the most complex clients, providing instructive lessons for public health system reform well beyond the margins faced by people who are unhoused. This paper describes how PEACH's unique model, critical community partnerships and research have been necessary for it to become a leader in community-based palliative care for structurally vulnerable people.


Subject(s)
Home Care Services , Palliative Care , Humans , Vulnerable Populations
9.
Inorg Chem ; 62(11): 4625-4636, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36883367

ABSTRACT

The substitution of heavier, more metallic atoms into classical organic ligand frameworks provides an important strategy for tuning ligand properties, such as ligand bite and donor character, and is the basis for the emerging area of main-group supramolecular chemistry. In this paper, we explore two new ligands [E(2-Me-8-qy)3] [E = Sb (1), Bi (2); qy = quinolyl], allowing a fundamental comparison of their coordination behavior with classical tris(2-pyridyl) ligands of the type [E'(2-py)3] (E = a range of bridgehead atoms and groups, py = pyridyl). A range of new coordination modes to Cu+, Ag+, and Au+ is seen for 1 and 2, in the absence of steric constraints at the bridgehead and with their more remote N-donor atoms. A particular feature is the adaptive nature of these new ligands, with the ability to adjust coordination mode in response to the hard-soft character of coordinated metal ions, influenced also by the character of the bridgehead atom (Sb or Bi). These features can be seen in a comparison between [Cu2{Sb(2-Me-8-qy)3}2](PF6)2 (1·CuPF6) and [Cu{Bi(2-Me-8-qy)3}](PF6) (2·CuPF6), the first containing a dimeric cation in which 1 adopts an unprecedented intramolecular N,N,Sb-coordination mode while in the second, 2 adopts an unusual N,N,(π-)C coordination mode. In contrast, the previously reported analogous ligands [E(6-Me-2-py)3] (E = Sb, Bi; 2-py = 2-pyridyl) show a tris-chelating mode in their complexes with CuPF6, which is typical for the extensive tris(2-pyridyl) family with a range of metals. The greater polarity of the Bi-C bond in 2 results in ligand transfer reactions with Au(I). Although this reactivity is not in itself unusual, the characterization of several products by single-crystal X-ray diffraction provides snapshots of the ligand transfer reaction involved, with one of the products (the bimetallic complex [(BiCl){ClAu2(2-Me-8-qy)3}] (8)) containing a Au2Bi core in which the shortest Au → Bi donor-acceptor bond to date is observed.

10.
Cardiovasc Drugs Ther ; 37(5): 997-1010, 2023 10.
Article in English | MEDLINE | ID: mdl-36190667

ABSTRACT

In recent years, there has been growing evidence that vascular pathologies arise in sites experiencing an altered haemodynamic environment. Fluid shear stress (FSS) is an important contributor to vascular homeostasis and regulates endothelial cell (EC) gene expression, morphology, and behaviour through specialised mechanosensitive signalling pathways. The presence of an altered FSS profile is a pathological characteristic of many vascular diseases, with the most established example being the preferential localisation of atherosclerotic plaque development. However, the precise haemodynamic contributions to other vascular pathologies including coronary artery vein graft failure remains poorly defined. To evaluate potential novel therapeutics for the treatment of vascular diseases via targeting EC behaviour, it is important to undertake in vitro experiments using appropriate culture conditions, particularly FSS. There are a wide range of in vitro models used to study the effect of FSS on the cultured endothelium, each with the ability to generate FSS flow profiles through which the investigator can control haemodynamic parameters including flow magnitude and directionality. An important consideration for selection of an appropriate model of FSS exposure is the FSS profile that the model can generate, in comparison to the physiological and pathophysiological haemodynamic environment of the vessel of interest. A resource bringing together the haemodynamic environment characteristic of atherosclerosis pathology and the flow profiles generated by in vitro methods of applying FSS would be beneficial to researchers when selecting the appropriate model for their research. Consequently, here we summarise the widely used methods of exposing cultured endothelium to FSS, the flow profile they generate and their advantages and limitations in investigating the pathological contribution of altered FSS to vascular disease and evaluating novel therapeutic targets for the treatment and prevention of vascular disease.


Subject(s)
Atherosclerosis , Endothelial Cells , Humans , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Signal Transduction , Atherosclerosis/metabolism , Biophysics
11.
J Am Chem Soc ; 144(51): 23516-23521, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36575926

ABSTRACT

Singlet fission (SF) is a promising strategy to overcome thermalization losses and enhance the efficiency of single junction photovoltaics (PVs). The development of this field has been strongly material-limited, with a paucity of materials able to undergo SF. Rarer still are examples that can produce excitons of sufficient energy to be coupled to silicon PVs (>1.1 eV). Herein, we examine a series of a short-chain polyene, dithienohexatriene (DTH), with tailored material properties and triplet (T1) energy levels greater than 1.1 eV. We find that these highly soluble materials can be easily spin-cast to create thin films of high crystallinity that exhibit ultrafast singlet fission with near perfect triplet yields of up to 192%. We believe that these materials are the first solution-processable singlet fission materials with quantitative triplet formation and energy levels appropriate for use in conjunction with silicon PVs.

12.
Inorg Chem ; 61(48): 19203-19219, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36384021

ABSTRACT

Single-source precursors are ubiquitous in a number of areas of chemistry and material science due to their ease of use and wide range of potential applications. The development of new single-source precursors is essential in providing entries to new areas of chemistry. In this work, we synthesize nine new structurally related bimetallic metal-zirconium alkoxides, which can be used as single-source precursors to zirconia-based materials. Detailed analysis of the structures of these complexes provides important insights into the main factors influencing their aggregation. Investigation of the thermal decomposition of these species by TGA, PXRD, SEM, and EDS reveals that they can be used to produce bimetal oxides, such as Li2ZrO3, or a mixture of metal oxides, such as CuO and ZrO2. Significantly, these studies show that thermodynamically unstable forms of zirconia, such as the tetragonal phase, can be stabilized by metal doping, providing the promise for targeted deposition of zirconia materials for specific applications.

13.
J Am Chem Soc ; 144(42): 19499-19507, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36223562

ABSTRACT

Cooperative H-bonding interactions are a feature of supramolecular networks involving alcohols. A family of phenol oligomers, in which the hydroxyl groups form intramolecular H-bonds, was used to investigate this phenomenon. Chains of intramolecular H-bonds were characterized using nuclear magnetic resonance (NMR) spectroscopy in solution and X-ray crystallography in the solid state. The phenol oligomers were used to make quantitative measurements of the effects of the intramolecular interactions on the strengths of intermolecular H-bonding interactions between the H-bond donor on the end of the chain and a series of H-bond acceptors. Intramolecular H-bonding interactions in the chain increase the strength of a single intermolecular H-bond between the terminal phenol and quinuclidine by up to 14 kJ mol-1 in the n-octane solution. Although the magnitude of the effect increases with the length of the H-bonded chain, the first intramolecular H-bond has a much larger effect than subsequent interactions. H-bond cooperativity is dominated by pairwise interactions between nearest neighbors, and longer range effects are negligible. The results were used to develop a simple model for cooperativity in H-bond networks using an empirical parameter κ to quantify the sensitivity of the H-bond properties of a functional group to polarization. The value of κ measured in these systems was 0.33, which means that formation of the first H-bond increases the polarity of the next H-bond donor in the chain by 33%. The cumulative cooperative effect in longer H-bonded chains reaches an asymptotic value, which corresponds to a maximum increase in the polarity of the terminal H-bond donor of 50%.


Subject(s)
Alcohols , Phenols , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Quinuclidines
14.
J Am Chem Soc ; 144(42): 19447-19455, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36251009

ABSTRACT

4,5-Dicyanoimidazole and 2-aminothiazole are azoles that have previously been implicated in prebiotic nucleotide synthesis. The former compound is a byproduct of adenine synthesis, and the latter compound has been shown to be capable of separating C2 and C3 sugars via crystallization as their aminals. We now report that the elusive intermediate cyanoacetylene can be captured by 4,5-dicyanoimidazole and accumulated as the crystalline compound N-cyanovinyl-4,5-dicyanoimidazole, thus providing a solution to the problem of concentration of atmospherically formed cyanoacetylene. Importantly, this intermediate is a competent cyanoacetylene surrogate, reacting with ribo-aminooxazoline in formamide to give ribo-anhydrocytidine ─ an intermediate in the divergent synthesis of purine and pyrimidine nucleotides. We also report a prebiotically plausible synthesis of 2-aminothiazole and examine the mechanism of its formation. The utilization of each of these azoles enhances the prebiotic synthesis of ribonucleotides, while their syntheses comport with the cyanosulfidic scenario we have previously described.


Subject(s)
Azoles , Nucleosides , Nucleosides/chemistry , Ribonucleotides/chemistry , Pyrimidine Nucleotides , Purines , Sugars , Formamides , Adenine
15.
Xenobiotica ; 52(5): 498-510, 2022 May.
Article in English | MEDLINE | ID: mdl-35822285

ABSTRACT

Metabolism data for MCPA in rat, dog and human shows a single oral dose is quantitatively and rapidly absorbed with evidence of non-linear kinetics at >100 mg/kg bw. The extent of metabolism is low and consistent between rat and human, with substantially higher metabolic conversion in dog. Parent accounts for 50%-67% dose in rat, ∼40% in human and 2%-27% in dog. No dog specific metabolite is apparent.In rat and human, MCPA and metabolites are rapidly eliminated in urine (65%-70% within 24 h) but in dog, excretion is via urine and faeces (20%-30% within 24 h), with renal excretion saturating between 5 and 100 mg/kg bw.The species difference in excretion is reflected in pharmacokinetics. Terminal half-life is similar in rat and human (15-17 h) but higher in dog (47 h). Modelling shows species differences in single dose kinetics profoundly affect systemic exposure following repeat dosing.The difference in renal excretion and systemic exposure of MCPA between dogs and rats has been attributed to species differences in active transporters (OAT1/OAT3). A new in vitro flux study in renal proximal tubules supports this hypothesis with net secretion in rat and human of a similar magnitude but significantly less in dog.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Herbicides , Animals , Dogs , Feces , Humans , Kinetics , Rats , Species Specificity
16.
Bioconjug Chem ; 33(8): 1441-1445, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35894801

ABSTRACT

Bicycles are constrained bicyclic peptides formed through reaction of three cysteine residues within a linear sequence with a trivalent, symmetrical small molecule scaffold. Bicycles with high binding affinities to therapeutically important targets can be discovered using screening technologies such as phage display. Increasing the chemical diversity of Bicycles should improve the probability of finding hits to new targets and can be achieved by expanding the toolbox of Bicycle forming chemistries. Gold(III) S-arylation has recently been described as a method for the efficient bioconjugation of cysteine residues under conditions compatible with phage display. Herein, we explore the scope and generality of this methodology for Bicycle construction through the synthesis and evaluation of four novel tris-Gold complexes. These new scaffolds were systematically reacted with a variety of peptide sequences, varying in amino acid loop lengths. All four scaffolds proved to be capable and selective reactive partners for each peptide sequence and afforded the desired Bicycle products in 13-48% isolated yield. This work exemplifies Gold-mediated arylation as a general approach for construction of novel, highly constrained Bicycles.


Subject(s)
Cysteine , Gold , Amino Acid Sequence , Bicycling , Cysteine/chemistry , Gold/chemistry , Peptide Library , Peptides/chemistry
17.
Int J Mol Sci ; 23(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35743073

ABSTRACT

Functional endothelial cells (EC) are a critical interface between blood vessels and the thrombogenic flowing blood. Disruption of this layer can lead to early thrombosis, inflammation, vessel restenosis, and, following coronary (CABG) or peripheral (PABG) artery bypass graft surgery, vein graft failure. Blood-derived ECs have shown potential for vascular tissue engineering applications. Here, we show the development and preliminary testing of a method for deriving porcine endothelial-like cells from blood obtained under clinical conditions for use in translational research. The derived cells show cobblestone morphology and expression of EC markers, similar to those seen in isolated porcine aortic ECs (PAEC), and when exposed to increasing shear stress, they remain viable and show mRNA expression of EC markers similar to PAEC. In addition, we confirm the feasibility of seeding endothelial-like cells onto a decellularised human vein scaffold with approximately 90% lumen coverage at lower passages, and show that increasing cell passage results in reduced endothelial coverage.


Subject(s)
Endothelial Cells , Tissue Engineering , Animals , Blood Vessel Prosthesis , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Saphenous Vein , Stress, Mechanical , Swine , Tissue Engineering/methods
18.
Chem Sci ; 13(18): 5398-5412, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35655560

ABSTRACT

Methods for measuring enantiomeric excess (ee) of organic molecules by NMR spectroscopy provide rapid analysis using a standard technique that is readily available. Commonly this is accomplished by chiral derivatisation of the detector molecule (producing a chiral derivatisation agent, CDA), which is reacted with the mixture of enantiomers under investigation. However, these CDAs have almost exclusively been based on carbon frameworks, which are generally costly and/or difficult to prepare. In this work, a methodology based on the readily prepared inorganic cyclodiphosph(iii)azane CDA ClP(µ-N t Bu)2POBorn (Born = endo-(1S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl) is shown to be highly effective in the measurement of ee's of chiral amines, involving in situ reaction of the chiral amines (R*NH2) with the P-Cl bond of the CDA followed by quaternization of the phosphorus framework with methyl iodide. This results in sharp 31P NMR signals with distinct chemical shift differences between the diastereomers that are formed, which can be used to obtain the ee directly by integration. Spectroscopic, X-ray structural and DFT studies suggest that the NMR chemical shift differences between diastereomers is steric in origin, with the sharpness of these signals resulting from conformational locking of the bornyl group relative to the P2N2 ring induced by the presence of the P(v)-bonded amino group (R*NH). This study showcases cheap inorganic phosphazane CDAs as simple alternatives to organic variants for the rapid determination of ee.

19.
J Am Chem Soc ; 144(23): 10396-10406, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35658467

ABSTRACT

Protein conjugates are valuable tools for studying biological processes or producing therapeutics, such as antibody-drug conjugates. Despite the development of several protein conjugation strategies in recent years, the ability to modify one specific amino acid residue on a protein in the presence of other reactive side chains remains a challenge. We show that monosubstituted cyclopropenone (CPO) reagents react selectively with the 1,2-aminothiol groups of N-terminal cysteine residues to give a stable 1,4-thiazepan-5-one linkage under mild, biocompatible conditions. The CPO-based reagents, all accessible from a common activated ester CPO-pentafluorophenol (CPO-PFP), allow selective modification of N-terminal cysteine-containing peptides and proteins even in the presence of internal, solvent-exposed cysteine residues. This approach enabled the preparation of a dual protein conjugate of 2×cys-GFP, containing both internal and N-terminal cysteine residues, by first modifying the N-terminal residue with a CPO-based reagent followed by modification of the internal cysteine with a traditional cysteine-modifying reagent. CPO-based reagents enabled a copper-free click reaction between two proteins, producing a dimer of a de novo protein mimic of IL2 that binds to the ß-IL2 receptor with low nanomolar affinity. Importantly, the reagents are compatible with the common reducing agent dithiothreitol (DTT), a useful property for working with proteins prone to dimerization. Finally, quantum mechanical calculations uncover the origin of selectivity for CPO-based reagents for N-terminal cysteine residues. The ability to distinguish and specifically target N-terminal cysteine residues on proteins facilitates the construction of elaborate multilabeled bioconjugates with minimal protein engineering.


Subject(s)
Cysteine , Proteins , Cyclopropanes , Cysteine/chemistry , Indicators and Reagents , Proteins/chemistry
20.
Cryst Growth Des ; 22(6): 3961-3972, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35673396

ABSTRACT

Terahertz time-domain spectroscopy in a transmission geometry combined with visual analysis was used to investigate the crystallization process of MgSO4 solution. Careful spectral analysis of both a feature at 1.6 THz and the overall magnitude of absorption allowed the extraction of information about the liquid phase before and during crystallization, aiding the investigation of solvation dynamics and the behavior of molecular species at phase boundaries. The method was reproducibly applied to a number of measurements on a series of solutions of three chosen concentrations at different temperatures. When increasing temperature at the end of the measurement, the dissolution of crystals was observed as well. The temperature-dependent absorption data of the semicrystalline systems were converted to the solvent concentrations using a recently developed method. Solutions of a series of concentrations were also investigated in the temperature range of 4-25 °C. The results were compared to the theoretical calculated values, and the consistent differences proved the existence of a hydration shell around the salt ions whose behavior is different from bulk water. Future work will focus on triggering nucleation at specific positions in order to study the very beginning of the crystallization process. MgSO4 heptahydrate is used as a model system in this study, while the concept and the setup can be applied to other systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...